Efficient Simulation of Large Deviations Events for Sums of Random Vectors Using Saddle-point Representations
نویسندگان
چکیده
We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed (i.i.d.), light-tailed and nonlattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queuing and financial credit risk modeling. It has been extensively studied in the literature where state-independent, exponentialtwisting-based importance sampling has been shown to be asymptotically efficient and a more nuanced state-dependent exponential twisting has been shown to have a stronger bounded relative error property. We exploit the saddle-point-based representations that exist for these rare quantities, which rely on inverting the characteristic functions of the underlying random vectors. These representations reduce the rare event estimation problem to evaluating certain integrals, which may via importance sampling be represented as expectations. Furthermore, it is easy to identify and approximate the zerovariance importance sampling distribution to estimate these integrals. We identify such importance sampling measures and show that they possess the asymptotically vanishing relative error property that is stronger than the bounded relative error property. To illustrate the broader applicability of the proposed methodology, we extend it to develop an asymptotically vanishing relative error estimator for the practically important expected overshoot of sums of i.i.d. random variables. ∗ ∗ Postal address: STCS, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai, India. Email: {ankush,dsantanu} @tcs.tifr.res.in; [email protected]
منابع مشابه
Efficient Simulation of Large Deviation Events for Sums of Random Vectors Using Saddle-Point Representations
We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed, light-tailed and non-lattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queuing and ...
متن کاملApplied Probability Trust (1 October 2011) EFFICIENT SIMULATION OF DENSITY AND PROBABILITY OF LARGE DEVIATIONS OF SUM OF RANDOM VECTORS USING SADDLE POINT REPRESENTATIONS
We consider the problem of efficient simulation estimation of the density function at the tails, and the probability of large deviations for a sum of independent, identically distributed, light-tailed and non-lattice random vectors. The latter problem besides being of independent interest, also forms a building block for more complex rare event problems that arise, for instance, in queuing and ...
متن کامل6 v 1 2 6 O ct 1 99 9 Action Correlations in Integrable Systems
In many problems of quantum chaos the calculation of sums of products of periodic orbit contributions is required. A general method of computation of these sums is proposed for generic integrable models where the summation over periodic orbits is reduced to the summa-tion over integer vectors uniquely associated with periodic orbits. It is demonstrated that in multiple sums over such integer ve...
متن کاملStrong Convergence of Weighted Sums for Negatively Orthant Dependent Random Variables
We discuss in this paper the strong convergence for weighted sums of negatively orthant dependent (NOD) random variables by generalized Gaussian techniques. As a corollary, a Cesaro law of large numbers of i.i.d. random variables is extended in NOD setting by generalized Gaussian techniques.
متن کاملOn the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables
In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.
متن کامل